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Elimination of spiral chaos by periodic force for the Aliev-Panfilov model
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Spiral chaos appears in the two-dimensional Aliev-Panfilov model. The generation mechanism of the spiral
chaos is related to the breathing instability of pulse trains. The spiral chaos can be eliminated by applying
periodic force uniformly. The elimination of the spiral chaos is most effective when the frequency of the
periodic force is close to that of the breathing motion.
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Some types of cardiac arrhythmia are characterized
rotating waves that are similar to spiral waves found in
citable media@1#. Control and elimination of arrhythmia an
the spiral waves are medically important. The control
regular spiral patterns in excitable media has been stu
with several methods. Meandering of the spiral core can
controlled by a periodic parameter modulation@2#; impulses
and periodic force have been applied to suppress sp
waves@3,4#, and local and global feedback have been app
to excitable systems to eliminate spiral waves@5#. A serious
cardiac arrhythmia, such as ventricular fibrillation, is rela
to the spiral chaos where many spiral cores are spont
ously generated. Eliminating the spiral chaos is more imp
tant.

Periodic forcing to spatio-temporal chaos was used to
store regular waves for diffusively coupled chemical oscil
tors and the complex Ginzburg-Landau equation@6,7#. In this
Brief Report, we attempt to control and eliminate nume
cally the spiral chaos by applying a periodic force and fi
an effective frequency for the elimination. We use the f
lowing Aliev-Panfilov model for the cardiac cell@8#:

]e

]t
52K~e2a!~e21!2er1¹2e,

~1!
]r

]t
5@e1m1r /~m21e!#@2r 2ke~e2b21!#.

Here,e stands for the membrane potential andr stands for
the conductance of the inward current. This model is a p
nomenological model which represents certain feature of
pulse propagation in a cardiac tissue. The parameter va
of K, a, e, m1 , m2, and b are evaluated based on the re
experiment. The model equation exhibits spiral breakup
spiral chaos in a certain parameter range@9#.

We perform numerical simulations of Eq.~1!. The param-
eters, excepta, are fixed asK58, e50.01, m150.11, m2
50.3, andb50.1. Firstly, we show numerical results for
one-dimensional system, that is,¹2e in Eq. ~1! is replaced
by ]2e/]x2. The numerical simulation was performed usi
the finite difference method withDt50.005 andDx50.5.
The system sizeL is 500, and the periodic boundary cond
tions are used. We have found that a pulse train propag
with a constant velocity for largea, however, the pulse train
exhibits a breathing instability by decreasinga. Figure 1~a!
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displays the time evolution ofe(x) at a50.063 for the pulse
train with wave numberk52p(10/L);0.126. The pulse
width is temporally oscillating. The oscillatory instability o
a single pulse in a one-dimensional ring of excitable medi
called the alternans instability, since the pulse width alm
alternates every time when the pulse turns around the
@10#. The oscillatory instability of a pulse train with spatia
period 2p/k almost corresponds to the alternans instabi
in a ring of size 2p/k. The alternans instability in a ring o
size 2p/k5L/10 occurs as a supercritical Hopf bifurcation
a5ac0;0.0647. However, the oscillatory instability of th
pulse train occurs at slightly largera5ac;0.0664 for k
52p(10/L) accompanying the spatial modulation. As se
in Fig. 1~a!, the phase of the breathing motion is not sy
chronized for all pulses in the pulse train, as a result of
spatial modulation. Asa is decreased further, the breathin
amplitude becomes larger, and the spatial modulation gro
Finally, one pulse is annihilated and the wave number
decreased tok52p(9/L). The time evolution of the wave
number decrease process is shown in Fig. 1~b! for a
50.044. It is characteristic of the cardiac tissue that
pulse width is easily varied with spatial periods of pul
trains. This characteristic is involved in the Aliev-Panfilo
model. The critical parameters for the breathing instabi
and the wave number changing bifurcation strongly dep
on the pulse interval. Figure 2 displays the two bifurcati
curves ~the breathing instability and the wave number d
creasing bifurcation! as a function of wave numberk. As the
pulse interval 2p/k is narrower, the instabilities occur mor
easily, and the two bifurcation curves approach each ot
The wave number changing process occurs just after

FIG. 1. ~a! Time evolution of the breathing state ata50.063 for
the pulse train with wave numberk52p(10/L);0.126. ~b! Time
evolution of the wave number decrease process ata50.044.
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FIG. 2. Bifurcation curves as a function of wave numberk of the
pulse trains. The solid curve denotes the breathing instability,
the dashed curve denotes the bifurcation below which the w
number decreasing transition occurs.

FIG. 3. Time evolution ofe(x,L2x) for a50.115. The pulse
trains emitted form the spiral core exhibit breathing motion and
pulse collapse occurs att;520. ~b! Snapshot ofe at t5800. In the
shaded region,e is larger than 0.4.

FIG. 4. ~a! Time evolution for a50.06, k52p(10/L), F
50.009, andv52p/60. For t.220, the pulse train is completel
collapsed.~b! Critical values ofF as a function of the periodT
52p/v of the external force fora50.06.
06720
breathing instability fork;0.2.
Next, we consider the instability of the spiral pattern

two dimensions. A stationary rotating spiral becomes u
stable in a certain parameter range, as shown by Panfilov@9#.
We have performed a numerical simulation of Eq.~1! in two
dimensions. The system size is 3003300 and no flux bound-
ary conditions are used. A spiral pattern is stable fora
.0.13 for the fixed parametersK58, e50.01, m150.11,
m250.3, andb50.1. The initial condition is a regular spira
pattern obtained numerically fora50.13. Figure 3~a! dis-
plays a time evolution ofe(x,y) on line y5L2x at a
50.115. At this parameter, pulse trains with wave numb
k;0.185 are emitted from the spiral core. A one-dimensio
pulse train with wave numberk;0.185 is unstable for the
breathing motion ata50.115, as is shown in Fig. 2. Th
pulse trains indeed exhibit breathing motion, and the wa
number decreasing processes occur att;520. In one-
dimensional system, the wave number decreasing pro
leads to a more stable structure with smaller wave num
however, in two dimensions, the wave number decreas
process leads to formation of additional topological defec
the spiral breaks up, and then spiral chaos appears. Th
another route of spiral breakup, although it is similar to t
spiral breakup via a wave number changing process by
Eckhaus instability@11#. Figure 4~b! displays a snapshot ofe
at t5800, wheree takes a larger value than 0.4 in the shad
region. Two main spirals and several small spirals are ge
ated as a result of the spiral breakup.

To eliminate the pulse train and the spiral chaos, we ap
an external periodic force. The model equation is written

]e

]t
52k~e2a!~e21!2er1¹2e1Fsin~vt !,

~2!
]r

]t
5@e1m1r /~m21e!#@2r 2ke~e2b21!#,

whereF andv are the amplitude and frequency respective
of the external periodic force. We first show a numeric
result of a one-dimensional system. Figure 4~a! displays a
time evolution forF50.009, a50.06, k52p(10/L), and
v52p/60. The initial condition is a breathing state for E
~1!, without the external force. The breathing motion of t
pulse width is entrained to the external force. The amplitu
of the breathing motion grows, and finally the pulse tra
structure collapses completely fort.230. Thus, the pulse
train could be eliminated by applying the external period
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FIG. 5. Three snapshots o
pattern ofe at t50,100, and 300
for a50.1,F50.036, and v
52p/60. The spiral chaos disap
pears completely att5300.
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force. We have investigated a critical value of the amplitu
F for the complete collapse. Figure 4~b! displays the critical
valuesFc as a function of periodT52p/v for a50.06. The
phase diagram has a shape like the Arnold tongue for
forced entrainment, and the critical valueFc takes the small-
est value atT;57.5. The period is close to periodT8;61 of
the natural breathing motion without the periodic forcin
These results are interpreted as a kind of resonance. Th
if the period of the external force is close to the period of
natural breathing motion, the effect of the external force
enhanced and the pulse train collapses easily.

We have applied a periodic force to eliminate the sp
chaos in two dimensions. The system size is 2003200 and

FIG. 6. Critical strengthF for the spiral collapse ata50.1 as a
function of periodT of the external force.
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the value of parametera is 0.1. The spiral chaos appears f
this parameter. We have used a snapshot of the spiral c
as an initial condition for the forced system. In the simu
tion of the two-dimensional system, we have applied the
riodic force F sinvt to the spiral chaos only for 0,t
,6p/v ~three periods!, and observed whether the spir
chaos collapses or the spiral chaos is maintained after t
eriods of the external forcing. The three periods are suffici
to see the effect of the external forcing. Figure 5 displa
three snapshots of pattern ofe at t50,100, and 300 fora
50.1, F50.036, andv52p/60. The spiral chaos collapse
completely and the uniform statee(x,y)50 andr (x,y)50
have been obtained after the application of external for
We have numerically obtained the critical valueFc for the
collapse of the spiral chaos. The critical strengthFc is shown
in Fig. 6 as a function of the periodT52p/v. The critical
curve takes minimum atT;50. It is close to the period;55
of the natural breathing motion at this parameter.

To summarize, we have performed numerical simulatio
of the Aliev-Panfilov model. We have found a breathing i
stability for the pulse trains in one dimension. The breath
instability leads to spiral breakup in two dimensions. T
periodic force is applied to eliminate the pulse trains and
spiral chaos. We have found that the most effective f
quency to eliminate the wave patterns is close to the nat
frequency of the breathing motion. This is interpreted a
kind of the resonance effect. The periodic forcing with t
most effective frequency may be effective as a method
mild defibrillation.
ev.

ett.
@1# F.X. Witkowsku, L.J. Leon, P.A. Penkoske, W.R. Giles, M.
Spano, W.L. Ditto, and A.T. Winfree, Nature~London! 392, 78
~1998!.

@2# O. Steinbock, V. Zykov, and S.C. Mu¨ller, Nature ~London!
366, 322 ~1993!.

@3# G.V. Osipov and J.J. Collins, Phys. Rev. E60, 54 ~1999!.
@4# H. Sakaguchi and T. Fujimoto, Prog. Theor. Phys.108, 241

~2002!.
@5# A.V. Panfilov, S.C. Mu¨ller, V.S. Zykov, and J.P. Keener, Phy

Rev. E61, 4644~2000!.
@6# G. Baier, S. Sahle, Y. Chen, and T. Hoff, J. Chem. Phys.110,
3251 ~1999!.

@7# H. Zhang, B. Hu, G. Hu, Q. Ouyang, and J. Kurths, Phys. R
E 66, 046303~2002!.

@8# R.R. Aliev and A.V. Panfilov, Chaos, Solitons Fractals7, 293
~1996!.

@9# A.V. Panfilov, Phys. Rev. Lett.88, 118101~2002!.
@10# M. Courtemanche, L. Glass, and J.P. Keener, Phys. Rev. L

70, 2182~1993!.
@11# M. Bär and M. Or-Guil, Phys. Rev. Lett.82, 1160~1999!.
2-3


