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Elimination of spiral chaos by periodic force for the Aliev-Panfilov model
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Spiral chaos appears in the two-dimensional Aliev-Panfilov model. The generation mechanism of the spiral
chaos is related to the breathing instability of pulse trains. The spiral chaos can be eliminated by applying
periodic force uniformly. The elimination of the spiral chaos is most effective when the frequency of the
periodic force is close to that of the breathing motion.
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Some types of cardiac arrhythmia are characterized bgisplays the time evolution af(x) ata=0.063 for the pulse
rotating waves that are similar to spiral waves found in ex+rain with wave numbelk=27(10L)~0.126. The pulse
citable medid 1]. Control and elimination of arrhythmia and width is temporally oscillating. The oscillatory instability of
the spiral waves are medically important. The control ofa single pulse in a one-dimensional ring of excitable media is
regular spiral patterns in excitable media has been studiechlled the alternans instability, since the pulse width almost
with several methods. Meandering of the spiral core can balternates every time when the pulse turns around the ring
controlled by a periodic parameter modulati@); impulses  [10]. The oscillatory instability of a pulse train with spatial
and periodic force have been applied to suppress spirgleriod 2m/k almost corresponds to the alternans instability
waves][3,4], and local and global feedback have been appliedn a ring of size 2r/k. The alternans instability in a ring of
to excitable systems to eliminate spiral wayB$ A serious  size 27/k=L/10 occurs as a supercritical Hopf bifurcation at
cardiac arrhythmia, such as ventricular fibrillation, is relateda=a.,~0.0647. However, the oscillatory instability of the
to the spiral chaos where many spiral cores are spontangulse train occurs at slightly largex=a.~0.0664 for k
ously generated. Eliminating the spiral chaos is more impor=2+(10L) accompanying the spatial modulation. As seen
tant. in Fig. 1(a), the phase of the breathing motion is not syn-

Periodic forcing to spatio-temporal chaos was used to rechronized for all pulses in the pulse train, as a result of the
store regular waves for diffusively coupled chemical oscilla-spatial modulation. As: is decreased further, the breathing
tors and the complex Ginzburg-Landau equaf®]. Inthis  amplitude becomes larger, and the spatial modulation grows.
Brief Report, we attempt to control and eliminate numeri-Finally, one pulse is annihilated and the wave number is
cally the spiral chaos by applying a periodic force and finddecreased t&=2(9/L). The time evolution of the wave
an effective frequency for the elimination. We use the fol-number decrease process is shown in Fi¢p) Ifor a

lowing Aliev-Panfilov model for the cardiac c€]: =0.044. It is characteristic of the cardiac tissue that the
pulse width is easily varied with spatial periods of pulse
§=—K(e— a)(e—1)—er+Vve trains. This characteristic is involved in the Aliev-Panfilov
at ’ model. The critical parameters for the breathing instability
(1) and the wave number changing bifurcation strongly depend
ar on the pulse interval. Figure 2 displays the two bifurcation
o ~Letparl(uate))[—r—ke(e—b—1)]. curves (the breathing instability and the wave number de-

creasing bifurcationas a function of wave numbér As the

Here, e stands for the membrane potential andtands for  pulse interval 2r/k is narrower, the instabilities occur more
the conductance of the inward current. This model is a pheeasily, and the two bifurcation curves approach each other.
nomenological model which represents certain feature of imThe wave number changing process occurs just after the
pulse propagation in a cardiac tissue. The parameter values
of K, a, €, uy, up, andb are evaluated based on the real ; (a r ®
experiment. The model equation exhibits spiral breakup ancsoo
spiral chaos in a certain parameter rafgg 250-

We perform numerical simulations of E(.). The param- g0
eters, exceph, are fixed aK =8, €=0.01, u;=0.11, u, 1504
=0.3, andb=0.1. Firstly, we show numerical results for a
one-dimensional system, that &2e in Eq. (1) is replaced
by e/ 9x?. The numerical simulation was performed using .
the finite difference method witlht=0.005 andAx=0.5. 0
The system siz& is 500, and the periodic boundary condi-
tions are used. We have found that a pulse train propagates FIG. 1. (a) Time evolution of the breathing stateat 0.063 for
with a constant velocity for larga, however, the pulse train the pulse train with wave numbde=27(10L)~0.126. (b) Time
exhibits a breathing instability by decreasiagFigure 1a) evolution of the wave number decrease process=ad.044.
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a breathing instability fokk~0.2.
0.16 ' ' ' ' ' Next, we consider the instability of the spiral pattern in
0.14 two dimensions. A stationary rotating spiral becomes un-
0.12 stable in a certain parameter range, as shown by Paffllov

0.1 We have performed a numerical simulation of Ef.in two
0.08 dimensions. The system size is 30800 and no flux bound-

' ary conditions are used. A spiral pattern is stable dor
0.06 >0.13 for the fixed parametets=8, ¢=0.01, x;=0.11,
0.04 u>=0.3, andb=0.1. The initial condition is a regular spiral
0.02F . pattern obtained numerically fa=0.13. Figure 8a) dis-

A 1 1 L ! plays a time evolution ofe(x,y) on line y=L—x at a
01 012 014 016 018 02 =0.115. At this parameter, pulse trains with wave number

k~0.185 are emitted from the spiral core. A one-dimensional
pulse trains. The solid curve denotes the breathing instability, an ulse 'Fraln Wlt.h Wave_numbd{~0._185 IS un_stab_le for the
the dashed curve denotes the bifurcation below which the wave reathlng m<_)t|on aa-O_.l_lS, as '.S Sho‘”f‘ in Fig. 2. The
number decreasing transition oceurs. pulse trains mde(_ad exhibit breathing motion, and the wave
number decreasing processes occurtat520. In one-

dimensional system, the wave number decreasing process
leads to a more stable structure with smaller wave number;
however, in two dimensions, the wave number decreasing
process leads to formation of additional topological defects,
the spiral breaks up, and then spiral chaos appears. This is
another route of spiral breakup, although it is similar to the
spiral breakup via a wave number changing process by the
Eckhaus instability 11]. Figure 4b) displays a snapshot ef
att=3800, wheree takes a larger value than 0.4 in the shaded
region. Two main spirals and several small spirals are gener-
X ated as a result of the spiral breakup.

FIG. 3. Time evolution ofe(x,L—x) for a=0.115. The pulse To eliminate the pulse train and the spiral chaos, we apply
trains emitted form the spiral core exhibit breathing motion and thean external periodic force. The model equation is written as
pulse collapse occurs &t 520. (b) Snapshot o& att=800. In the

FIG. 2. Bifurcation curves as a function of wave numkef the
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whereF andw are the amplitude and frequency respectively,
of the external periodic force. We first show a numerical
result of a one-dimensional system. Figur@)4displays a
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LTI ETXS time evolution for F=0.009, a=0.06, k=2(10L), and
S e e N w=27_r/60. The initial condition is a breathing state for Eq.
X (1), without the external force. The breathing motion of the

FIG. 4. (8 Time evolution for a=0.06, k=2m(10L), F pulse width is entrained to the external force. The amplitude

=0.009, andw=27/60. Fort>220, the pulse train is completely of the breathing motion grows, and finally the pulse train
collapsed.(b) Critical values ofF as a function of the period  Structure collapses completely for-230. Thus, the pulse

=2mlw of the external force foa=0.06. train could be eliminated by applying the external periodic
(a) (b) ()
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150 ] 150 FIG. 5. Three snapshots of
pattern ofe att=0,100, and 300
> 100 > 100 for a=0.1F=0.036, and o
- =2/60. The spiral chaos disap-
50 pears completely at=300.
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Fe the value of parametexis 0.1. The spiral chaos appears for
006 —T—T— T T — T this parameter. We have used a snapshot of the spiral chaos
as an initial condition for the forced system. In the simula-
tion of the two-dimensional system, we have applied the pe-
0.04 | - riodic force Fsinwot to the spiral chaos only for @t
<6m/w (three periods and observed whether the spiral
chaos collapses or the spiral chaos is maintained after thep-
0.02 I . eriods of the external forcing. The three periods are sufficient
to see the effect of the external forcing. Figure 5 displays
three snapshots of pattern efat t=0,100, and 300 foa
P S T W T W =0.1, F=0.036, andw=27/60. The spiral chaos collapses
30 40 50 60 70 80 90 completely and the uniform stag{x,y)=0 andr(x,y)=0
"y T have been obtained after the application of external force.
funEtliiﬁ%f (;2::gzl_rsct;(etr;]%tfxizr":z:efzfé;al collapse @=0.1asa g have numerically obtained the critical valkg for the

: collapse of the spiral chaos. The critical strenigthis shown

in Fig. 6 as a function of the periofi=2m/w. The critical

force. We have investigated a critical value of the amplitudecurve takes minimum at~50. It is close to the period 55
F for the complete collapse. Figurgb} displays the critical  of the natural breathing motion at this parameter.
valuesF . as a function of period =2#/w for a=0.06. The To summarize, we have performed numerical simulations
phase diagram has a shape like the Arnold tongue for thef the Aliev-Panfilov model. We have found a breathing in-
forced entrainment, and the critical valkg takes the small-  stability for the pulse trains in one dimension. The breathing
est value af ~57.5. The period is close to peridd~61 of  instability leads to spiral breakup in two dimensions. The
the natural breathing motion without the periodic forcing. periodic force is applied to eliminate the pulse trains and the
These results are interpreted as a kind of resonance. That ispiral chaos. We have found that the most effective fre-
if the period of the external force is close to the period of thequency to eliminate the wave patterns is close to the natural
natural breathing motion, the effect of the external force isfrequency of the breathing motion. This is interpreted as a
enhanced and the pulse train collapses easily. kind of the resonance effect. The periodic forcing with the

We have applied a periodic force to eliminate the spiralmost effective frequency may be effective as a method of
chaos in two dimensions. The system size is32Q00 and  mild defibrillation.
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